Intratumoral administration of pro-inflammatory allogeneic, off-the-shelf, dendritic cells in combination with anti-PD-1 or anti-CD137 has a synergistic anti-tumor effect

Background

The future of immuno-oncology lies in combination therapies of adaptive approaches that “release the brake”, such as immune check-point inhibitors (CPIs), with immune activating therapies that “push the gas” on the immune system, such as immune primers, vaccines and/or immune enhancers (e.g. IL-2, 4-1BB). Traditional vaccine approaches based on tumor-associated antigens have shown limited efficacy due to immune tolerance and limited antigen coverage, and recent efforts based on tumor-specific neoantigens through tumor biopsies and ex vivo identification and production requires a highly patient dependent process with significant limitations. The obvious way to circumvent these challenges would be to use the patient’s own tumor in situ, as a direct neoantigen source by intratumoral administration of a potent immune primer.

Immunicum AB has developed a cell-based immune primer named ilixadencel, consisting of pro-inflammatory allogeneic DCs producing high levels of immune cell-recruiting and activating factors for endogenous DCs, NK cells and T cells (1-4). Ilixadencel is currently in a Phase 2 study in renal cell carcinoma, and will now be investigated in a Phase 1b/2 study with checkpoints inhibitors in non-small cell lung cancer, head and neck squamous cell carcinoma, and gastric adenocarcinoma. Here we investigated the impact of mouse ilixadencel on tumor response in a mouse tumor model when ilixadencel is combined with the CPI (anti-PD-1) or the immune enhancer 4-1BB (anti-CD137), in comparison to a TLR- ligand as additional intratumoral immune priming approach. The ability of ilixadencel to up-regulate CD137-expression on co-cultured allogeneic NK cells and T cells in vitro was further investigated.

Results

Intratumoral immune priming with ilixadencel overcomes resistance to PD-1 blockade (Fig. 1, 2)

Data from clinical studies with ilixadencel (1,3) suggest that ilixadencel may synergize with drugs that promotes primed T cells from subsequent tumor-derived immunosuppression (i.e. sunitinib and gemcitabine). By using the anti-PD-1 resistant CT26 colon carcinoma model where the tumor is allowed to grow for 12 days before start of anti-PD-1 treatment (Day 1 in the study), the addition of two intratumoral injections of ilixadencel at Day 1 and 4 was found to overcome resistance to monotherapy with anti-PD-1 as shown by a significant delay in tumor progression (Figure 1).

Ilxadencel induces up-regulation of CD137 in co-cultured human allogeneic NK cells and T cells (Fig. 5, 6)

The stimulation of NK cells with IL-2 or ligation of their Fc-receptors has been shown to increase expression of the costimulatory receptor CD137. We therefore hypothesized that ilixadencel, which has been shown to activate co-cultured allogeneic T cells and NK cells in vitro (2), is also able to increase expression of CD137 in NK cells. As shown in Figure 5 and 6, T cells and particularly NK cells within PBMC populations co-cultured with ilixadencel DCs were shown to substantially upregulate CD137. These data may potentially explain the synergy seen between ilixadencel and anti-CD137 in the CT26 tumor model.

Conclusions

Our results support the use of intratumoral treatment with ilixadencel, an off-the-shelf cell-based immune primer, in combination with anti-PD-1 or with the immune enhancer anti-CD137. This emphasizes the potential for future Immuno-Oncology (IO) treatment strategies to incorporate the complementary mechanisms of immune primer, immune enhancer, and checkpoint inhibitor, while maintaining a sustainable tolerability profile for such regimens.

Material and methods

Reagents

Anti-mouse PD-1 (BioXcell clone RMP1-14) and anti-mouse CD137 (BioXcell clone 3H5) were used for in vivo studies in mice. Poly I:C HMW was purchased from InvivoGen. Expression of CD137 on human T cells and NK cells within PBMC populations co-cultured with immature or mature, autologous or allogeneic DCs for 24 hours was determined by flow cytometry using anti-human CD137-BV421 in combination with anti-CD20-RTC and anti-CD69-APC.

Isolation and generation of mouse and human ilixadencel

Bone marrow-derived mouse ilixadencel DCs were generated from wild-type C57BL/6 (H-2b) mice by standard methods (4). The non-adherent immune DCs were treated for 18 hours with a cocktail consisting of Poly I:C, TLR3- ligand, R848 (TLR7/8-ligand) and IFN-gamma (together, Immunicum’s COMBIG cocktail) before washing and subsequent cryopreservation. Just before dosing, the frozen mouse ilixadencel suspension was briefly thawed and washed.

Mouse tumor model

BALB/c (H-2d) mice were injected s.c. in the right flank with 3×10^5 CT26 syngeneic colon carcinoma cells. Twelve days after tumor cell injection, on Day 1 of the study, mice were sorted into study groups with group mean tumor volume of approximately 100 mm^3.

Vehicles and ilixadencel (0.9 million DCs/dose) were injected intratumorally (i.t.) on Day 1 and 7. Poly I:C (50 μg) was injected i.t. at Day 1, 4 and 7. Both anti-PD-1 and anti-CD137 were administered i.p. at 5 mg/kg. Anti-PD-1 was administered twice a week for two weeks starting on Day 1. Anti-CD137 was administered on Day 4 and 7. Animals were monitored individually for tumor growth until Day 45.

This study was conducted by:

Alex Karlsson-Parrá, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

Grammatiki Fotaki, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

Di Yu, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

Magnus Essand, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

References

